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Desegmentation Method for Analysis of
Two-Dimensional Microwave Circuits

P. C. SHARMA, STUDENT MEMBER, IEEE, AND KULDIP C. GUPTA, SENIOR MEMBER, IEEE

Abstract—A new method for the analysis of two-dimensional planar
circuits called the “desegmentation” method is proposed. This method is
applicable to configurations which can be converted into regular shapes (for
which Green’s functions are known) by adding one or more regular shaped
segments to them. Two examples of planar circuits, chosen such that the
results could be verified by the previously known segmentation technique,
illustrate the validity of the method.

I. INTRODUCTION

WO-DIMENSIONAL planar circuit elements have
been proposed [1]-[3] for use in microwave integrated
circuits (MIC’s) in stripline and microstrip line configura-
tions. The analysis of this type of circuit involves de-
termination of the circuit parameters of its equivalent
n-port network as a function of frequency by solving the
two-dimensional wave equation subject to the boundary
conditions of a magnetic wall around the periphery. When
the circuit pattern is of regular shape (i.e.,, for which
Green’s function is known as, for example, rectangular,
circular, equilateral triangular, etc.), the Green’s function
technique can be used to solve the problem analytically [1].
Also if the pattern can be divided into segments having
regular shapes the segmentation methods [2], [3] can be
used for analysis. Sometimes a planar circuit can be ex-
tended to a regular shape by adding another segment (or
segments) of regular shape to it. Two examples of this kind
are shown in Fig. 1. The trapezoidal planar circuit of Fig.
1(a) can be converted into a triangular circuit of Fig. 1(b)
by the addition of a triangular segment while the rectangu-
lar circuit with a slot (Fig. 1(c)) can be converted into a
complete rectangle by the addition of another rectangle as
illustrated in Fig. 1(d). In general, in the desegmentation
method being proposed here, a regular pattern 8 is added
to a nonregular pattern a (for which Green’s function is
not available) such that the resulting combination of -
and B-segments is also a regular pattern y. The characteris-
tics of B- and y-segments can be computed using Green’s
function method. The characteristics of the a-circuit can be
calculated by the method of “desegmentation” described in
this paper.
The desegmentation method can be formulated to
evaluate either the S-matrix or Z-matrix for the a-network,
in terms of those for the 8- and the y-elements. However,
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Fig. 1. Examples of planar circuits analyzed by desegmentation method.
(a) A trapezoidal planar circuit. (b) Desegmentation method applied to
(a). (¢) Rectangular ring planar circuit. (d) Desegmentation method
applied to (¢).

for the segmentation method, it has been shown that the
use of Z-matrices is computationally more efficient because
Green’s function for planar elements yields the Z-matrices |
directly. Also when this technique is used for analyzing
microstrip antennas [4], one is interested in evaluating the
equivalent magnetic current or the voltage along the pe-
riphery of the antenna. The voltage along the periphery can
be calculated by dividing the periphery into a large number
of ports and finding the voltage at these ports from the
Z-matrix of the multiport network thus formed. Thus the
Z-matrix approach is convenient for the antenna analysis
also. Consequently, only the Z-matrix formulation is dis-
cussed in this paper.

II. THEORETICAL FORMULATION

Consider the circuit shown in Fig. 1(a) and its extension
by desegmentation as shown in Fig. 1(b). As in the segmen-
tation method, the continuous interconnection between
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a- and B-segments is replaced by a discrete number of
interconnected ports, named c-ports on a-segment and
d-ports on B-segment. Their number (= C=D) depends on
the variation of the field along the interconnection and is
found by an iterative process in numerical computations.
Ports p and ¢ are the external (unconnected) ports of a-
and S-segments, respectively.

We define 1, I, 1;, and I, as the currents, and V,, V.,
V,, and V, as the voltages, at the ports D, ¢ d, and q,
respectively, Where p L,2,---,P; ¢=12,---,C;, d=
1,2,---,D; and g= -, 0. Since c-ports are connected

to respective d—ports, we have C=D and
v=v, I=-1,

(M

The Z-matrices for a, 8- and y-segments, namely Za, Zlg,
and Z , respectively, can be partitioned into submatrices
corresponding to the external (unconnected) and connected
ports as follows:

(2. Z,.

Z=| 5" 5 )
| cp ce

Z=| 0 (3)
| “qd q98 |

Z"Y: ;ppy Z~qu (4)
| “ar qq97 |

The third subscript with submatrices in (2)-(4) is used to
distinguish the submatrices of the same order in Z Zﬁ,
and Z If Z, and Z are known, Z can be computed using
the segmentation method (3] Z thus obtained, by using
(1), (2), and (3), is given by

3 Z a _Z CZQ Z C‘Z:i

Z,= ppe  Tpefdp  Spetdg (5)

Z sy Zyap _quZt/iq

where

24, =Z,42,] 2,
2y, =224 ‘24,

_In the desegmentation method we express Z_ in terms of
ﬁ and Z using (4) and (5). This is equivalent to obtaining
Z, in terms of Z}B and Z employing the interconnec-
tion relations given in (1).

If the currents at ports p and ¢ are considered as known
excitations and other variables, namely, the voltages at p-,
¢-, d-, and g-ports and the currents at ¢- and d-ports are
determined, the impedance matrix Z, can be evaluated. In
this formulation the unknowns, P voltages at p-ports, Q
voltages at g-ports, C voltages and C currents at ¢-ports,
and D voltages and D currents at d-ports, are added to
(P+Q+4D). The number of equations available is as
follows: (D+Q) equations from the definition of ZB’
(P+Q) equations from the definition of Z and 2D
equations from (1). These add up to only (P+2Q+3D)

equations. In order that Z, obtained be unique, it is

o
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necessary and sufficient that
(P+20+3D)=(P+Q+4D)

(6)

which implies Q=D. Therefore, in the desegmentation
method the number of g-ports (=Q) on the periphery
common to - and y-segments should be at least equal to
the number of interconnected ports (=C=D). Since B-
and y-segments are regular shapes, the submatrices of Z,
and Z, can be computed using the corresponding Green’s
functions. Therefore, the left-hand side of (5) is known.
Thus for Q=D, Z  can be computed from (5) as follows.
Comparing submatricés of (4) and (5), we have
[quv _quﬁ] =~ ZuZy
~ ~ ~ _1 ~
= _qu[ Z,.+ de] qu- (7
This equation can be solved for Z,, to give
ch = de -Z~ 1

(8)

where

~ ~ o~ ~ ~ 1~
Zl:quZéq[Zt;d[quv quﬁ] qu] Z;qud (8a)
and the superscript ¢ indicates transpose of a matrix.

Employing (5) and (8), other submatrices of Zy can be
expressed as

qu: —chzlﬁlqu (9)
Z,=—2,27'Z, ~(10)

s s s 1
Zopy = Lppa T ZpeZy Zgp.

(11)

Equations (9)—(11) can be rearranged to give submatrices
of Z, as

~ ~ —1 .~
zpc:—zpqz,;q[quzgq] Z - (12)
~ a o~y ~ 1—1 ~, =~
Z,=--Z|z2.,2, 'Z1,Z, (13)
s s s osiis

Zpa=Zppy =22 2, (14)

The Z-matrix of a-segment, as partitioned in (2), is thus
given by (8), (12), (13), and (14). The procedure for com-
puting Z, from (8) and (12) to (14) is, therefore, to com-
pute Zl, Z .. from (8), ch and ZWCIp from (12) and (13), and
finally Z,,, from (14). As mentioned earlier, the expres-
sions for Z, obtained above hold good for Q=D. The
computations get simplified if D can be made equal to Q.
In planar circuits this condition can be met, since the
number of interconnected ports can always be made greater
than the minimum needed for the convergence of the
results or Q can be increased by adding additional ports on
the segment B. In this case, when D=0, we have

~ ~ ~ ~ —1 =~
Z :qu[zqqr - qqﬂ] Z4a (8b)
and Z, can be expressed as
5 - Zp Y quZr;p —ZpeZ4a (15)
* quZ’ “de'qu ;d
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where

~ ~ ~ —1 ~
Zop= [quv —quﬁ] Zop

~ ~ ~ —1 ~

= [qu*/ _quﬁ] Zga-
It can be seen from (15) that it is not necessary to follow
any sequence, as is required in the general case, for com-
puting the submatrices of Z, when D=Q.

The Za, obtained in both the cases discussed above, is
the Z-matrix of the a-segment to which several c-ports
have been added at the interface between a- and S-
segments. Some of these c-ports may be the original c-ports,
of the a-segment, for which the Z-parameters are required,
and others are the ports added for computations in the
desegmentation method outlined above. The Z-matrix per-
taining to the original ports only, of a circuit, can be
written by discarding the rows and columns corresponding
to the c-ports added during computations of Z~a from (15).

One of the methods, of selecting the number of Q-ports,
which has been used successfully in several cases is as
follows. Consider a special case with P=1. Starting with an
assumed value of Q=1, evaluate Z,_, by using a part of

Pra
(15) which may be rewritten as
~ ~ ~ ~ ~ —1 =~
ZPP"‘ :ZPP'Y B ZPq[ZqCIY _quﬂ] Z‘IP ) (16)

It may be noted that for computing pra we do not need to
evaluate Z,,, Z,,, and Z_,. Only the evaluations of Z, and
Z,,s are required which do not involve the Z-parameters
corresponding to ¢- and d-ports. The value of the number
@ is increased iteratively until the value of ZP e Calculated
from (16), converges. This gives the value of Q, that is, the
minimum number of g-ports needed for computations. The
number of ¢- and d-ports should be at least equal to this
value. In the number of examples that have been studied, it
is found that this is also the sufficient number of c-ports
required for convergence of Za.

It may be noted that, if Z~eq :quﬂ, both (8a) and (8b)
become indeterminate and the desegmentation method
cannot be used. However, such a situation is rare in the

case of two-dimensional planar circuits.

I11.

For illustrating the validity and applications of the de-
segmentation method, two examples of the analysis of
planar circuits are discussed in this section. The circuits
chosen are such that the results could be verified by the
previously used segmentation method also.

EXAMPLES AND DISCUSSION

A. Example 1

Consider the trapezoidal planar circuit configuration
shown in Fig. 1(a). It is desired to evaluate the input
impedance, for this one port circuit, at port p,. This
impedance has been evaluated using both the desegmenta-
tion method proposed in this paper and the segmentation
method known earlier [3].

For employing the desegmentation method, an equi-
lateral triangle B is added to the trapezoid (a-segment) so
that the combination of a and B is also an equilateral
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Fig. 2. Variations of input impedance of trapezoidal circuit as calcu-
lated by the segmentation and the desegmentation methods.

triangle y as shown in Fig. 1(b). The Z-matrices for 8- and
v-segments are computed using Green’s function [6]. The
number of the g-ports is decided by following the proce-
dure outlined in the previous section and is found to be 4.
The width of the g-ports is chosen small enough so that the
field variation, over a port width, can be assumed to be
negligible. As there is no specified port of the initial
a-circuit corresponding to the c-ports, (16) yields the value
of the input impedance needed. Fig. 2 shows
the variation of this input impedance with frequency for
the case when 4=3.1711 cm, a=0.25 A, ¢, =2.55, and the
thickness of the dielectric substrate d=1.6 mm.

For the analysis using the segmentation method, the
trapezoidal circuit is divided in three segments, i.e., two
30°-60° right triangles and one rectangle as illustrated in
Fig. 2 (inset). The Z-matrices for these segments are com-
puted using Green’s functions [1], [6]. pra is then com-
puted using the segmentation method for Z-matrices [3]. It
is found that the number of interconnecting ports (between
the rectangle and two 30°-60° triangles) required for
convergence of pra is 16. The results obtained by this
method are also plotted in Fig. 2 and agree very well with
those obtained by the desegmentation method.

B. Example 2

Another example considered is a rectangular ring type
planar circuit shown in Fig. 1(c). In this case also it is
required to find out the input impedance at the port p, of
the a-circuit. In this case B-segment is a rectangular ele-
ment of length “a” and width “b” which when added to
a-pattern of Fig. 1(c) results in a complete rectangular
planar circuit y as shown in Fig. 1(d). The characteristics of
the small rectangle B and the outer (filled) rectangle vy, of
dimensions 4 X B, are computed using Green’s function [1].
In this case the total periphery of the 8-segment is common
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Fig. 3. Variation of input impedance of rectangular ring circuit, as
calculated by segmentation and desegmentation methods.
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Fig. 4. (a) Examples of circuit patterns which can be analyzed only by
desegmentation. (b) Examples of circuits for which desegmentation is
. more efficient.

with the inner periphery of the a-segment. The ports ¢ and
d are located along this interconnection. Thus there is no
part of the periphery, of the B-segment, left for locating the
g-ports. Since Q (the number of g-ports) cannot be made
zero, these ports are located inside the S-segment (i.e.,
inside the small rectangle). These are the fictitious ports,
with port voltages measured between the port locations
and the ground plane. As in the case of the ports on
periphery, in this case also the voltages are averaged over
each port width. The port current is considered to flow in
the direction normal to the plane of the paper. The formu-
lation presented in the previous section holds good for such
a case also. The minimum number of g-ports is decided by
following the same procedure as used in Example 1 and is
found to be 9. These g-ports are indicated by vertical bars
in Fig. 1(d). The widths of these ports have also been
selected iteratively for fast convergence of numerical com-
putations. The values of the input impedance obtained are
plotted in Fig. 3, as a function of frequency, for the case
when A=5cm, B=1cm, a=1 cm, b=8 mm, ¢, =2.54, and
thickness of substrate is 1.6 mm.

This circuit is analyzed using the segmentation method
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also. The a-circuit is divided into four segments as shown
in Fig. 3 (inset). In this example, the number of intercon-
nected ports required, between the various segments, is
found to be 4. The results agree very well with those
obtained from the desegmentation method as shown in
Fig. 3.

The two examples discussed above illustrate the validity
and the applications of the desegmentation method pro-
posed in this paper. Of course, the examples chosen are
such that the segmentation method is possible, so that
comparisons can be made. There are several situations
where the segmentation is not possible and the desegmen-
tation method can be used. Some examples of this type are
shown in Fig. 4(a). Also there could be situations where the
desegmentation method is more efficient. This is likely to
happen when the size of the 8-segment (needed to convert
the a-segment into a regular shape y) is small compared to
the a- and the y-segments. Some examples of this type are
shown in Fig. 4(b).

IV. CoNCLUDING REMARKS

The desegmentation method is also applicable to trans-
mission line circuits and lumped element circuits. This
method can be considered a generalization of the “de-
embedding” problem discussed in [7] for eliminating the
effects of connectors, etc., from the measured data. In this
case, the total system can be treated as the y-segment
whose characteristics are measured. The embedding net-
work (connectors etc.) becomes the B-segment (char-
acterized by previous calibration) and the device or the
network under test is the a-segment whose characteristics
are to be found.

'The desegmentation method, as presented in this paper,
extends the applicability of the Green’s function technique
for analysis of two-dimensional planar circuits. It is ex-
pected to find applications in the analysis of microstrip
and stripline circuits and also for studying two-dimensional
microstrip antenna configurations.
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Broad-Band Active Phase Shifter Using Dual-Gate
MESFET
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A bstract— This paper describes a broad-band, dual-gate MESFET phase
shifter (vector generator), operating over the 4—8-GHz frequency band and
capable of a continuous phase shift and multiplicity of modulations includ-
ing digital phase shift and amplitude modulation directly, and indirectly
(with additional information processing circuits), single sideband modula-
tion, frequency modulation, and phase modulation, etc. A dual-gate FET is
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used as a variable gain amplifier and phase shift is obtained by complex
addition of two orthogonal variable vectors. The principle of the phase
shifter and the experimental results are presented.

I. INTRODUCTION

In the past, ferrite phase shifters have been used in the phased
array radar systems. The p-i-n diode phase shifters are being
considered because of their lighter weight, higher speed, and
transmission reciprocity as compared to the ferrites [1]-[4]. The
ferrite and p-i-n diode phase shifters, however, still suffer from a
relatively slow response time. The recent interest in fully active
phased array radars as well as progress in the monolithic GaAs
integrated circuits has opened the possibility of realizing active
phase shifting subassemblies based upon GaAs ficld-effect tran-
sistors (FET’s). .
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